Ozone

Центр здоровья и красоты

ЛИПИДЫ

Без органических веществ существование человека невозможно. Так, выделяют жирные органические вещества, или липиды, – это совокупность жиров и жироподобных веществ, называемых липоидами. Важную функцию липиды несут в виде формирования определенного барьера. Поскольку это вещество содержится во всех клетках организма, человек «не тает» от воды и прочего воздействия влаги. Но это далеко не все функции и преимущества, которые выделяют у жиров или липидов. Рекомендуется ознакомиться с минимальными значениями жиров в организме, участвующих также в выработке гормонов, и понять их важность для нормальной жизнедеятельности.

О строении

Предварительно следует рассмотреть строение жиров, от которых зачастую человек желает избавиться полностью. При этом липиды представляют собой одну из трех групп важных органических веществ. Их химический состав позволяет предотвратить растворение в воде. Жиры можно расщепить только бензолом, ацетоном спирта и прочими органическими растворителями. Но это не значит, что требуется обливать себя ацетоном – подобное может привести к химическому ожогу кожи.

Жиры бесцветны, не имеют запаха и вкуса. По строению представляют собой совокупность жирных кислот и спиртов. Если к жиру прибавить дополнительные вещества в виде фосфора, серы или азота, получаются сложные жиры. Жировая молекула всегда включает в себя водород, углерод и кислород. Также выделяют ненасыщенные жирные кислоты и насыщенные, отличающиеся связями атома углерода. Жирные кислоты – это алифатические или циклические углеродные связи. В зависимости от количества групп и выделяют две разновидности. Насыщенные кислоты содержат одну или несколько двойных связей, а ненасыщенные вовсе не имеют двойных связей между атомами углерода.

Видео

Представленные жиры формируются в определенном виде в зависимости от вида организма. Если речь идет о клетках, значит, находят капли или гранулы. Когда говорят о многоклеточном организме, к примеру о человеке, здесь выделяют жировую ткань. Она, в свою очередь, состоит из адипоцитов – специальных клеток, способных собирать жиры в большом количестве при чрезмерном поступлении калорий. Организм человека не может существовать без жиров и жировых клеток. Даже при сильном похудении жировая прослойка останется. Это не значит, что человек жирный – это просто указывает на нормальную деятельность организма.

О классификации

Жиры, или липиды, имеют свою классификацию, что помогает в быстром и простом изучении всех особенностей.

Более подробная классификация липидов представляется в таблице.

Типы Виды Общая характеристика
Простые жиры Глицериды Нейтральные жиры. Относятся к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды
Воски Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)
Сложные жиры Фосфолипиды Образованы присоединением к липидам остатков фосфорной кислоты. Обширная группа, включающая две подгруппы:
– глицерофосфолипиды;
– сфинголипиды
Гликолипиды Состоят из углеводов и липидов, образующих гидрофильно-гидрофобные комплексы

Представленные в таблице жиры относятся к омыляемым разновидностям. Иными словами, по окончании процесса гидролиза образуется мыло. Существует группа неомыляемых жиров, которые при взаимодействии с водой остаются в неизменной форме. Такие жиры называются стероидами.

Они, в свою очередь, разделяются на следующие подвиды:

  • Стерины – это стероидные спирты, содержащиеся в животных и растительных тканях.
  • Желчные кислоты – эти кислоты являются последователями холевой кислоты, способствуют растворению холестерина и помогают переварить или расщепить липид.
  • Стероидные гормоны – здесь выделяют кортизол, тестостерон и прочие гормоны, которые отвечают в жизнедеятельности человека за рост и развитие организма в целом.

В представленных группах отдельно говорят о липопротеинах, которые представляются в виде сложного комплекса жиров и белков. Липопротеины по своим свойствам относятся к сложным белкам, но не жирам.

Подобное объясняется составом липопротеинов – здесь содержатся холестерин, фосфолипид, нейтральные жиры и жирные кислоты. В свою очередь, липопротеины делятся на две группы – это растворимые и нерастворимые жиры. Растворимые жиры включены в состав плазмы крови, молока и желтка, а вторая группа жирных веществ характеризуется содержанием в оболочке нервных волокон.

Ученые в большей степени изучили липопротеины, содержащиеся в плазме крови, которые различаются по плотности. Выявлена даже динамика – чем больше жиров, тем меньше плотность.

Обратите внимание: Классификация липидов в большей степени происходит в соответствии с физической структурой, а именно выделяют твердые жиры и масла. Жиры, в свою очередь, разделяются на резервные и структурные вещества (первые зависят от питания, вторые – от генетической составляющей человека). С точки зрения происхождения жиров выделяют растительные и животные разновидности.

Значение

Липиды участвуют в метаболизме и постройке организма, дают энергию и регулируют рост. Список общих функций липидов и их описание представлены в таблице.

Функция

Описание

Энергетическая

Триглицериды при полном расщеплении дают больше энергии, чем белки и углеводы. Из 1 г жира высвобождается 38,9 кДж энергии

Запасающая

Жиры способны накапливаться в организме, создавая энергетический резерв. Особенно это важно для животных, впадающих в спячку. Жиры расходуются медленно, особенно при пассивном образе жизни, что помогает пережить неблагоприятные условия. Кроме того, запасаются как резерв воды (горб верблюда, хвост тушканчика). При окислении 1 кг жира выделяется 1,1 л воды

Защитная

Жировая прослойка защищает от механического повреждения внутренние органы

Структурная

Входят в состав плазмалеммы клетки. Фосфолипиды выстраивают двойной слой, обеспечивая естественный барьер. Холестерин придаёт жёсткость, гликолипиды обеспечивают взаимосвязь клеток

Теплоизоляционная

Жиры обладают низкой теплопроводностью, поэтому у многих животных, живущих в холодной среде, он откладывается в значительном количестве. Например, подкожный жир кита может достигать 1 метра

Водоотталкивающая

Кожа животных, в том числе человека, листья, плоды, стволы растений, перья птиц смазываются жиром (восками), чтобы отталкивать лишнюю влагу

Регуляторная

Входят в состав гормонов, фитогормонов, жирорастворимых витаминов (D, Е, К, А), регулирующих деятельность организма. Гиббереллин – гормон роста растений. Тестостерон, эстроген – половые гормоны. Альдостерон регулирует водно-соляной баланс. Желчные липиды контролируют пищеварение

Рис. 3. Строение плазмалеммы.

У человека и высших позвоночных животных жир накапливают специальные клетки – адипоциты, которые образуют жировую ткань.

Что мы узнали?

Из урока биологии узнали, какую функцию выполняют липиды в клеточной мембране и в организме в целом. Липиды – сложно устроенные вещества, состоящие из спиртов и жирных кислот. Различные модификации жиров позволяют липидам участвовать в различной деятельности организма. Липиды входят в состав гормонов, плазмалеммы, витаминов, способны накапливаться в жировых тканях и служить источником энергии, воды, защищать от повреждений и холода.

Тест по теме

Оценка доклада

Насыщенные жирные кислоты

Насыщенные — содержатся преимущественно в животных жирах, а также могут частично синтезироваться из углеводов и даже из белков. Именно избыток насыщенных жирных кислот в питании человека приводит к нарушению обменных жировых процессов, повышению уровня холестерина в крови.

Растительные жиры содержат в основном ненасыщенные кислоты. В некоторых растительных продуктах их содержится достаточно много, например, в орехах — 65 %, в овсяной крупе — 7 %, в гречневой крупе — 3 %.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты, особенно такие, как линолевая, линолиновая и арахидоновая, играют важную роль в обменных процессах организма человека. Они не могут синтезироваться и потому являются незаменимыми и должны поступать в организм извне. Ненасыщенные жирные кислоты входят в состав клеточных мембран и других структурных элементов тканей и участвуют в обменных реакциях, обеспечивая процессы роста, нормальные структурные функции, нормальное строение капилляров, их проницаемость, что особенно важно в протекании тканевых процессов. Ненасыщенные жирные кислоты способствуют удалению холестерина из организма, тем самым препятствуя развитию атеросклероза. Потребность организма в полиненасыщенных жирных кислотах составляет 20–25 г в сутки, и за счет этих кислот необходимо обеспечивать до 5 % общей калорийности рациона питания человека.

Фосфолипиды — лецитин, холин, кефалины, также участвуют в регуляции холестеринового обмена, препятствуют накоплению холестерина, то есть обладают липотропным действием. Больше всего фосфолипидов в зерне, бобовых, нерафинированных растительных маслах, картофеле.

27) Углеводы

Важнейшими энергетическими компонентами пищи являются углеводы, наиболее быстро и оперативно обеспечивающие текущие потребности организма в энергии.

Различают простые сахара и полисахариды:

Углеводы содержатся преимущественно в растительных продуктах.

По усваиваемости различают усваивамые в пищеварительном тракте человека углеводы и неусваивамые. Длительное время неусваивамые углеводы считали балластными веществами, но современные исследования доказали их важную роль в обменном процессе.

  • К усваиваемым углеводам относят глюкозу, фруктозу, сахарозу, галактозу, лактозу, мальтозу, рафннозу, инулин, крахмал, а также декстрины, как промежуточный продукт распада крахмала.

  • Неусваиваимыми считаются целлюлоза, гемицеллюлоза, пектиновые вещества, камеди, декстраны, лигнин, фитиновая кислота. Большинство неусваиваимых углеводов являются основой клеточных стенок растений.

Утилизация углеводов человеческим организмом зависит также от наличия ферментов в пищеварительных соках, а также от некоторых гормональных веществ, например, инсулина, гормонов щитовидной железы, коры надпочечников и других.

В растениях широко распространены питательные сахара — глюкоза, фруктоза, галактоза и манноза.

В ряде растений содержится инулин, представляющий собой цепочку фруктозы, рекомендуемый в качестве полисахарида в питании больных сахарным диабетом. Галактоза в растениях встречается р виде гликозидов. В сахарной свекле и тростнике содержится сахароза, откуда ее получают промышленным способом. Мальтоза встречается в овсе, ячмене, ржи, сое. Лактоза в растениях не встречается, она поступает в организм человека с животными продуктами, в частности с молоком.

Наиболее распространенный в растениях полисахарид — это крахмал, важный компонент повседневной пищи. Он содержится во многих растительных продуктах — хлебе, мучных изделиях, картофеле, крупяных и фруктовых блюдах.

Нормальное продвижение пищи по пищеварительному тракту, выведение из организма холестерина, связывание некоторых микроэлементов, снижение аппетита, создание чувства насыщения — вот далеко не все эффекты, определяемые присутствием неусвояемых углеводов.

Пектины в растительных продуктах также играют важную биологическую роль естественных адсорбентов токсических гнилостных веществ, солей тяжелых металлов, снижают уровень холестерина, выводят желчные кислоты. Наиболее богаты пектином свекла и черная смородина — 1,1 %, яблоки — 1 % и сливы — 0,9 %.

28) Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной стенки. Клеточная оболочка определяет форму клетки, придает клеткам и тканям растений механическую прочность и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как механический каркас. Клеточная оболочка обладает такими свойствами, которые позволяют противостоять давлению воды внутри клетки, и в то же время обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником. Появились данные, что углеводные компоненты клеточной оболочки, взаимодействуя с гор­монами, вызывают ряд физиологических изменений. Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная. В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы. Первичные клеточные стенки содержат из расчета на сухое вещество: 25% целлюлозы, 25% гемицеллюлозы, 35% пектиновых веществ и 1—8% структурных белков. Однако цифры весьма колеблются. Так, в состав клеточных стенок колеоптилей злаков входит до 60—70% гемицеллюлоз, 20—25 % целлюлозы, 10% пектиновых веществ. Вместе с тем клеточные стенки эндосперма содержат до 85% гемицеллюлоз. Во вторичных клеточных стенках больше целлюлозы. Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Целлюлоза, или клетчатка (С6Н10О5)n, представляет собой длинные неразветвленные цепочки, состоящие из 3—10 тыс. остатков D-глюкозы, соединенных b-1,4-гликозидными связями. Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями. Диаметр мицеллы составляет 5 нм, диаметр микрофибриллы — 25—30 нм, макрофибриллы — 0,5 мкм. Структура микро- и макрофибрилл неоднородна. Наряду с хорошо организованными кристаллическими участками имеются паракристаллические, аморфные.

Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены в аморфную желеобразную массу — матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,— это производные пентоз и гексоз. Степень полимеризации у этих соединений меньше по сравнению с клетчаткой (150—300 мономеров, соединенные b-1,3- и b-1,4-гли-козидными связями). Из гемицеллюлоз наибольшее значение имеют ксило-глюканы, которые входят в состав матрикса первичной клеточной стенки. Это цепочки остатков D-глюкозы, соединенных b-1,4-гликозидными связями, у которых от шестого углеродного атома глюкозы отходят боковые цепи, главным образом из остатков D-ксилозы. К ксилозе могут присоединяться остатки галактозы и фукозы. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ее вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на первичную оболочку. Ввиду того, что наложение идет уже на твердую оболочку, фибриллы целлюлозы в каждом слое лежат параллельно, а в соседних слоях — под углом друг к другу. Предполагается, что за ориентацию микрофибрилл целлюлозы ответственны микротрубочки. Этим достигается значительная прочность (и твердость) вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях до 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами — лигнином, суберином. Лиг­нин — это полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. Мономерами суберина являются насыщенные и ненасыщенные оксожирные кислоты. Пропитанные суберином клеточные стенки (опробковение оболочки) становятся труднопроницаемыми для воды и растворов. На поверхности клеточной стенки могут откладываться кутин и воск. Кутин состоит из оксожирных кислот и их солей, выделяется через клеточную стенку на поверхность эпидермальной клетки и участвует в образовании кутикулы. В состав кутикулы могут входить воска, которые также секретирует цитоплазма. Кутикула препятствует испарению воды, регулирует водно-тепловой режим тканей растений.

Исследования позволили дать предположительную модель взаимосвязи и взаиморасположения всех перечисленных веществ в клеточной стенке. Согласно этой модели в первичной клеточной оболочке микрофибриллы целлюлозы располагаются либо беспорядочно, либо перпендикулярно (в основном) продольной оси клетки. Между микрофибриллами целлюлозы находятся молекулы гемицеллюлозы, которые, в свою очередь, связаны через пектиновые вещества с белком. При этом последовательность веществ следующая: целлюлоза — гемицеллюлозы — пектиновые вещества — белок — пектиновые вещества — гемицеллюлозы — целлюлоза. Микрофибриллы целлюлозы и вещества матрикса оболочки связаны между собой. Единственными нековалентными связями являются водородные между целлюлозными микрофибриллами и гемицеллюлозой (по преимуществу ксилоглюканом). Между ксилоглюканом и пектиновыми веществами, так же как и между пектиновыми веществами и белком экстенсином, возникают ковалентные связи.

29) В основе роста многоклеточных организмов лежит увеличение числа и размеров клеток, сопр6овождаемое их дифференциацией, т.е. возникновением и накоплением различий между клетками, образовавшимися в результате деления. Еще со времени Ю. Сакса рост клеток принято делить на три фазы: эмбриональную, растяжения, дифференцировки. Такое разделение носит условный характер. За последнее время внесены изменения в само понимание основных особенностей, характеризующих эти фазы роста. Если прежде считалось, что процесс деления клетки происходит лишь в эмбриональную фазу роста, то сейчас показано, что клетки могут иногда делиться и в фазу растяжения. Важно, что дифференцировка отнюдь не является особенностью только третьей, последней фазы роста. Дифференцировка клеток, в смысле появления и накопления внутренних физиологических различий между ними, проходит на протяжении всех трех фаз и является важной особенностью роста клеток. В третьей фазе эти внутренние физиологические различия лишь получают внешнее морфологическое выражение. Все же ряд существенных отличий между фазами роста имеется, и физиологи продолжают рассматривать их отдельно. Эмбриональная фаза. Клетка возникает в результате деления другой эмбриональной клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы, достигает размеров материнской клетки и снова делится. Таким образом, эмбриональная фаза делится на два периода: период между делениями — интерфаза продолжительностью 15—20 ч и собственно деление клетки — 2—3 ч. Время это колеблется в зависимости от вида растений и условий (температуры).

На этой фазе процесс дифференцировки уже прояв¬ляется в определенных структурных признаках, т. е. меняется форма, внутрен¬няя и внешняя структура клетки. Процесс функциональной дифференциации клеток, или накопление физиологических различий между ними, происходит на всех фазах роста. Определенные различия имеются уже между появившимися в период деления дочерними клетками, из которых в дальнейшем будут образо¬вываться различные ткани. Это проявляется в их химическом составе, морфо¬логических особенностях. Значительно варьируют число и структура митохонд¬рий, и особенно пластид, обилие и локализация эндоплазматической сети. Очень видоизменяются клетки проводящей системы. При дифференциации члеников ситовидных трубок большинство органелл разрушается. В сосудах ксилемы почти полностью исчезает цитоплазма. Происходит образование вторичной клеточной оболочки. Этот процесс сопровождается наложением новых слоев микрофиб¬рилл целлюлозы на старые. При этом ориентация фибрилл целлюлозы в каж¬дом новом слое другая. Клеточная оболочка утолщается и теряет способность к росту.

В стенках соседних клеток, как правило, одна против другой, образуются поры. Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка . Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется.

Каждая пора имеет поровую камеру . В тех случаях, когда откладывается мощная вторичная оболочка, камеры превращаются в узкиепоровые каналы . В клетках паренхимных и механических тканей вторичная оболочка обычно резко прерывается у краев камеры или порового канала, диаметр которых благодаря этому почти не изменяется по всей толще вторичной оболочки. Поры такого типа называются простыми, а комбинация двух простых пор — простой парой пор.

В водопроводящих элементах — сосудах и трахеидах — вторичная оболочка нередко нависает над камерой в виде свода, образуя окаймление. Такие поры получили название окаймленных или окаймленной пары пор. Поровая камера, ограниченная окаймлением, открывается в полость клетки через отверстие в окаймлении — апертуру поры. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке.

ПЕРФОРА́ЦИЯ — Сквозные отверстия в оболочках клеток проводящих элементов у сосудистых растений.

30) Зеленая, желтая и коричневая окраска зерен ржи обусловлены соответствующим сочетанием синезеленой, коричневой и соломенножелтой окраски алейронового слоя, семенной и плодовой оболочек. Пигментация указанных составных частей является весьма важным природным фактором цветовой характеристики зерна ржи. В соответствии со сделанным предположением о характере содержащихся в зерне пигментов предварительно была произведена качественная проба на содержание хлорофилла, каротиноидов и антоцианинов. В качестве подопытного материала была взята рожь сорта Вятка московская урожая 1947 г. Определения проводились нами в четырехкратной повторности в сходе с сита 2,0х20 мм при наличии верхнего сита с отверстиями 2,2х20 мм. Выровненное зерно разбивали на цветовые фракции и разделяли на составные части. Хлорофилл определяли на основе получения спиртовых вытяжек. Для установления наличия каротиноидов готовили хлороформенный экстракт, который при добавлении насыщенного раствора треххлористой сурьмы в хлороформе в присутствии каротиноидов давал синюю окраску. Наличие антоцианинов устанавливалось методом А.Л. Кирсанова. В их присутствии полученный на холоде экстракт при добавлении закисной соли сернокислого железа и сегнетовой соли дает интенсивную фиолетовую окраску. Для определения хлорофилла был использован метод, применяемый в лаборатории фотосинтеза Института физиологии растений Академии наук СССР. Навеску измельченного материала с добавлением СаСО3 несколько раз экстрагируют при растирании со спиртом ректификатом до получения бесцветных вытяжек. Соединенные спиртовые вытяжки сгущают под вакуумом и направляют на измерение коэффициента поглощения в спектрофотометр Бекмана при длине волны 665 мμ. Расчет производят, исходя из того, что 1%-ный раствор хлорофилла в слое 1 см дает коэффициент поглощения при данной длине волны E1 = 40 000. Содержание каротиноидов определяли методом Государственной контрольной витаминной станции Министерства здравоохранения СССР. Сущность его сводится к растиранию навески с этиловым спиртом, затем с бензином, омылению полученной вытяжки с 5%-ным раствором щелочи, отмывке спирта и щелочи водой, сушке бензиновой фракции с безводным сернокислым натрием, пропусканию через адсорбционную колонку и колориметрированию конечного раствора по сравнению со стандартным раствором. Антоцианины определяли по методу, принятому во Всесоюзном витаминном институте. Сущность его заключается в том, что навеску заливают 0,2% NaOH, кипятят и после образования желтокрасной окраски колориметрируют по сравнению со стандартным раствором 0,05 нормального йода. Из пигментов пластид были обнаружены хлорофилл и каротиноиды, из пигментов клеточного сока — антоцианины. Опытами установлено, что хлорофилл включен главным образом в алейроновый слой как зеленых зерен, которые дали наиболее интенсивное окрашивание, так и зерен другой окраски.

ЛИПИДЫ — обширная группа веществ, содержащихся в живых организмах, различающихся по химическому составу, структуре и выполняемой в организме функции, но сходных по физико-химическим свойствам. Л. нерастворимы в воде, растворимы в так наз. жировых растворителях — эфире, хлороформе, бензоле и т. п. В молекуле Л. содержатся высшие алкильные радикалы. Приведенное выше определение может быть отнесено к большому числу веществ, в т. ч. и к таким, которые обычно причисляются к другим классам соединений, напр, к жирорастворимым витаминам и их производным, к каротиноидам, высшим углеводородам и спиртам и др. Включение всех этих веществ в число Л. в известной степени оправдано, потому что в живых организмах они находятся вместе с Л. и вместе с ними экстрагируются органическими растворителями. В организме млекопитающих Л. являются важным энергетическим субстратом в окислительных процессах. Особая роль принадлежит триглицеридам жировой ткани — главному энергетическому резерву организма. Триглицериды подкожной клетчатки, кроме того, играют термозащитную роль, а также предохраняют внутренние органы и ткани от механических повреждений (см. Жировая ткань, Жиры). Фосфолипиды (см. Фосфатиды) и холестерин (см.), так же как и белки, являются важнейшими структурными компонентами мембран клетки и субклеточных структур. Холестерин, кроме того, служит субстратом для образования желчных к-т, стероидных и половых гормонов. Сфинголипиды (см.) и фосфолипиды необходимы для нормального функционирования нервной ткани. Незаменимые жирные кислоты (см.) служат источником образования простагландинов.

Болезни, в основе патогенеза которых лежит нарушение обмена Л., объединяют в обширную группу липидозов (см.).

При щелочном или кислотном гидролизе простые Л. либо не подвергаются расщеплению, либо расщепляются с образованием так наз. липидных дериватов (производных) — соединений, сохраняющих присущую Л. нерастворимость в воде и растворимость в органических растворителях, а также в ряде случаев — с образованием глицерина. К простым Л. относятся жирные к-ты, нейтральные жиры (ацилглицерины или триглицериды), липидные алко-голи (холестерин, витамины А и D и их эфиры), сквален и воски.

Сложные Л. — фосфолипиды (фосфатиды, фосфоглицериды) и сфинголипиды — это большая группа соединений, содержащих в молекулах, помимо углерода, водорода и кислорода, еще азот, часто фосфор, а в отдельных случаях и серу (сульфолипиды).

При гидролизе фосфолипидов образуются липидные дериваты, фосфорная к-та, глицерин и обычно (но не всегда) водорастворимое азотистое основание. К фосфолипидам относятся фосфатидные к-ты, фосфатидилглицерины, полиглицеринфосфаты (напр., кардиолипин), фосфатидилэтаноламины (кефалины), фосфатидилхолины (лецитины), фосфатидилсерины, фосфатидилинозиты, лизофосфоглицериды и плазмалогены.

При гидролизе сфинголипидов образуются липидные дериваты, ненасыщенный аминоспирт сфингозин или его насыщенный аналог дигидросфингозин и водорастворимые продукты. К сфинголипидам относятся сфингомиелины, цереброзиды, а также ганглиозиды, которые представляют собой высокомолекулярные гликолипиды (см.), содержащие в своем составе жирные к-ты, сфингозин, глюкозу, галактозу, галактозамин и нейраминовую к-ту.

Животный организм обладает способностью синтезировать все основные классы Л. de novo или ресинтезировать их из продуктов распада пищевых Л. Не синтезируются в организме животных и человека лишь жирорастворимые витамины и незаменимые полиненасыщенные жирные к-ты. Основным местом синтеза Л. являются печень и стенка тонкой кишки. Синтезированные в них Л. транспортируются в другие органы и ткани в составе растворимых в воде липопротеидных комплексов (см. Липопротеиды): из стенки кишечника в виде хиломикронов, а из печени — в виде липопротеидов различной плотности (см. Жировой обмен). В плазме крови все Л. находятся в составе липопротеидных комплексов, в виде которых они транспортируются к органам и тканям.

Некоторые Л. в той или иной степени специфичны для определенных органов и тканей (напр., цереброзиды для мозговой ткани), другие Л., напр, фосфолипиды и холестерин, входят в состав клеток всех тканей. Содержание Л. в различных органах и тканях неодинаково. Если не считать жировую ткань, больше всего Л. находится в нервной ткани, где содержание их составляет 51—54% от сухого веса. Наиболее богата нервная ткань фосфолипидами и сфингомиелинами (28% от сухого веса), холестерином (10%), цереброзидами и ганглиозидами (7%). В печени человека содержится от 7 до 14% Л. (от сухого веса). При некоторых патол, состояниях, напр, при жировой дистрофии печени, содержание Л. в ткани пораженного органа достигает 45% от сухого веса, гл. обр. за счет увеличения количества триглицеридов.

Простейшим липопротеидом является комплекс альбумин—неэтерифицированные жирные к-ты (НЭЖК), в составе к-рого НЭЖК транспортируются из жировых депо к месту их окисления в тканях. Основная масса триглицеридов пищевого происхождения транспортируется хиломикронами, триглицеридов эндогенного происхождения — липопротеидами очень низкой плотности, эфиров холестерина — липопротеидами высокой плотности. Суммарное содержание всех Л. (общие Л.) в плазме крови взрослых здоровых людей колеблется в пределах 350—800 мг% . Содержание основных Л. плазмы крови человека показано в таблице.

Таблица. СОДЕРЖАНИЕ ОСНОВНЫХ ЛИПИДОВ В ПЛАЗМЕ КРОВИ ВЗРОСЛЫХ ЗДОРОВЫХ ЛЮДЕЙ

Название липидов

Неэтерифицированные жирные кислоты

8- 20

Триглицериды (нейтральные жиры)

50 — 200

Фосфолипиды

Сфингомиелины

30— 60

Холестерин неэтерифицированный

50—110

Холестерин этерифицированный

100— 220

Патология липидного обмена — см. Жировой обмен, Липопротеиды .

Биохимические методы исследования

Биохим, определение Л. проводится гл. обр. в плазме или сыворотке крови, значительно реже в кале (с целью диагностики стеатореи) и моче (при липурии). Определение Л. в плазме крови особенно важно при заболеваниях, сопровождающихся повышением их концентрации в крови (гиперлипидемиях). К ним относятся некоторые заболевания печени (острые и хрон, гепатиты, цирроз и др.), липоидный нефроз (нефротическая гиперлипидемия), сахарный диабет, атеросклероз, панкреатиты, гипотиреоз. Широко применяется определение Л. (холестерина и триглицеридов) в крови при фенотипировании первичных и вторичных гиперлипопротеинемий с целью диагностики и рационального диетического и медикаментозного лечения. Снижение содержания Л. в крови (гиполипидемия) наблюдается реже — при длительном голодании или резко ограниченном потреблении жиров и при гипертиреозе.

При исследовании Л. в крови необходимо строго придерживаться следующих общих принципов: 1) взятие крови производится натощак спустя 10—12 час. после последнего приема пищи; 2) плазма (сыворотка) крови, используемая для анализа, не должна быть гемолизированной; 3) для экстрагирования Л. применяются органические растворители высокой степени очистки; 4) стандарты или референтные препараты Л. сопоставляют с международными стандартами и хранят в замороженном состоянии.

Существует несколько методов определения общих Л. в плазме (сыворотке) крови. Широкое применение нашли гравиметрические методы, основанные на экстрагировании Л. из плазмы крови смесью органических растворителей, с последующим их выпариванием и взвешиванием липидного остатка. Эти методы, однако, не отличаются высокой точностью.

Ряд методов основан на окислении общих Л. хромовой кислотой с последующим титриметрическим или колориметрическим количественным определением (см. Колориметрия, Титриметрический анализ). Широко применяется метод, основанный на цветной реакции, к-рую дают продукты распада Л. с сульфофосфованилиновым реактивом. Метод определения общих Л. в сыворотке крови с сульфофосфованилиновым реактивом принят у нас в стране в качестве унифицированного; содержание Л. в сыворотке крови здорового человека, определенное этим методом, в среднем составляет 350—800 мг%.

Концентрацию общих Л. в сыворотке крови определяют также методом Свана в модификации Л. К. Баумана (окрашенные судаковым черным Л. количественно извлекаются из сыворотки крови и определяются фотометрически) и турбидиметрическим методом (метод Хуэрго), в основу к-рого положено измерение оптической плотности жировой эмульсии, образуемой при взаимодействии серной к-ты с n-диоксановым экстрактом Л. сыворотки крови. Методом Хуэрго в сыворотке крови здорового человека определяется 500 — 700 мг% общих Л.

Для определения триглицеридов наиболее часто применяют методы, в основе которых лежит гидролитическое расщепление триглицеридов. Образовавшийся в результате гидролиза глицерин окисляют до формальдегида и последний определяют колориметрически. Наибольшей точностью из таких методов обладает метод Карлсона, часто применяемый в модификации Игнатовской (H. Ignatowsca).

Для определения холестерина используют методы, основанные на цветной реакции Либерманна— Бурхарда (см. Либерманна-Бурхарда реакция), причем наибольшей точностью из них обладает метод Абелля (см. Абелля метод). Кроме того, для определения холестерина и триглицеридов в крови начинают применять высокоспецифические энзиматические методы с использованием готовых наборов реактивов. Наконец, для определения этих Л. используют автоанализаторы — отечественный прибор АБМ-1, автоанализатор АА-2 фирмы «Техникой» и др. (см. Автоанализаторы).

Методы определения фосфолипидов основаны на экстрагировании или осаждении фосфолипидов из плазмы (сыворотки) крови, минерализации фосфолипидного фосфора, проведении цветной реакции на фосфор и колориметрическом измерении интенсивности окраски (см. Блура метод).

Для определения неэтерифицированных жирных к-т используют титриметрические и колориметрические методы. Из последних наиболее часто применяют методы, основанные на том, что жирные к-ты образуют с медью соли, которые в свою очередь образуют цветные комплексы с диэтил дитиокарбаматом натрия и другими соединениями.

Для разделения Л. используют методы тонкослойной хроматографии, часто с последующим анализом жирных к-т с помощью газожидкостной хроматографии (см. Хроматография).

Гистохимические методы определения в тканях

Самым старым методом окрашивания Л. в тканях является метод с использованием четырехокиси осмия (OsO4). Этот реактив восстанавливается непредельными жирными к-тами и целым рядом других веществ, обладающих восстанавливающими свойствами. Продукты восстановления OsO4 окрашены в черный цвет. Однако следует признать, что методы выявления Л. с помощью жирорастворимых красителей более просты и надежны. В гистохимии для этих целей прежде всего стали использовать судан III, несколько позже — судан IV и шарлах. Л. более интенсивно окрашиваются красящими смесями, особенно теми, которые содержат два (или более) гомолога или изомера нафтоловых суданов. Окрашивание Л. жирорастворимыми красителями основано на том, что они растворяются в жировых веществах лучше, чем в обычных растворителях. Термин «суданофилия» означает способность ткани окрашиваться любыми жирорастворимыми красителями.

Для сохранения Л. в тканях при фиксации рекомендуется использовать 10 — 15% р-р формалина, но еще лучше использовать фиксатор формол-кальций по Бейкеру: формалин— 10 мл; 10% хлористый кальций — 10 мл; дистиллированная вода — 80 мл.

К этому фиксатору должен быть добавлен мел, для того чтобы смесь имела нейтральную реакцию. Фиксировать ткань рекомендуется 24—48 час., более длительная фиксация может привести к образованию кристаллов, изменению растворимости Л. и т. д. Отмытая после фиксации ткань промывается в проточной воде; срезы готовятся на замораживающем микротоме. Ткань паренхиматозных органов можно предварительно заключить в желатину.

При окрашивании ткани на Л. дает хорошие результаты и одновременно выявляет суданофильную зернистость в сегментоядерных лейкоцитах метод Гольдмана. Р-р судана III для окраски тканей по этому методу готовится следующим образом: 70% этанол — 100 мл; дистиллированная вода —- 20 мл; альфа-нафтол — 1,2 г; судан III — в избытке.

Смесь кипятят в течение 10 мин. и фильтруют. Срезы ткани красят 15 мин., затем дифференцируют в 70% этаноле, контролируя процесс под микроскопом. Мазки крови фиксируют 3 мин. смесью, состоящей из 1 части формалина и 4 частей 96 % этанола.

При окраске тканей на Л. по методу Чаччо следует маленькие кусочки фиксировать в течение 24—48 час. в смеси следующего состава: 5% водный р-р двухромовокислого калия — 80 мл; формалин — 20 мл; ледяная уксусная к-та — 5 мл.

Затем кусочки ткани выдерживают 5 — 8 дней в 3% двухромовокислом калии («хромируют»), сутки промывают в проточной воде, проводят через этанол восходящих концентраций в течение суток, проводят через ксилол и заключают в парафин. Приготовленные срезы после обработки 70% этанолом красят насыщенным р-ром судана III в 70% этаноле или при температуре 50° красителем следующего состава: 80 % этанол — 95 мл; ацетон — 5 мл; судан III — до насыщения.

После охлаждения жидкость фильтруется. Срезы красят 30 — 60 мин. при температуре 30°, споласкивают 50% этанолом, промывают в дистиллированной воде и заключают в глицерин-желатину.

Ядра клеток можно красить на Л. квасцовым гематоксилином, лучше это делать до обработки срезов су-даном. Л. окрашиваются в оранжевокрасный цвет.

A. H. Климов; А. Г. Уфимцева (гист.).

О функциях липидов и жирных кислот

Функции липидов в организме человека многогранны, поскольку они несут основное биологическое значение в жизнедеятельности всего организма.

Видео

На момент изучения липидов ученые выделили следующие функции:

  • энергетическую;
  • функцию теплоизоляции;
  • структурную;
  • регуляторную;
  • защитную;
  • функцию увеличения плавучести.

Говоря простым языком, можно выделить следующие основные пути использования липидов в организме человека.

Итак:

  • липиды или их подвид триглицерид способны сохранить тепло человека – именно поэтому человек не мерзнет при комнатной температуре;
  • наличие подкожного жира говорит о защитной функции организма – происходит защита внутренних органов;
  • липиды или фосфолипиды положительно воздействуют на формирование клеток, поскольку участвуют в строении клеточной мембраны;
  • жировая ткань – это энергия для человека, поэтому при соблюдении диеты клетки распадаются на жирные кислоты и прочие составляющие, обеспечивающие организм энергией;
  • гликолипиды помогают в выполнении рецепторной функции – помогают связать клетки для получения и проведения сигналов;
  • фосфолипиды также дополнительно участвуют в свертываемости крови, что необходимо для нормальной деятельности человека;
  • липиды, или их подвид, воски, находятся на листьях растения, что помогает в защите листа от промокания.

Отсюда следует, что недостаток липидов в организме человека приводит к общему нарушению обмена веществ, а также на клеточном уровне. Подобное чревато развитием большинства патологий – сложных или простых заболеваний.

Видео

Зная в точности, на какие вещества распадаются липиды – на подвиды органических веществ, указанных выше, и жирные кислоты – можно скорректировать свое питание для получения вожделенного результата. Из всего вышесказанного делается вывод, что без жиров и жирных кислот организм человека существовать не может. Если к простым составляющим прибавляются дополнительные группы, образуются сложные жиры, участвующие в жизнедеятельности человека в соответствии с основными функциями. Жиры входят во все клетки живых организмов без исключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх